Testosterone Enanthate

Generic Name: Testosterone Enanthate
Brand Name: ANDRONE®
Dosage Form: Injection 100mg/ml - Injection 250mg/ml
Pharmacological Category: Sex Hormones
Therapeutic Category: Androgens
Pregnancy Category: Category X

Pharmacology

Endogenous androgens are responsible for the normal growth and development of the male sex organs and for maintenance of secondary sex characteristics. These effects include growth and maturation of prostate, seminal vesicles, penis, and scrotum; development of male hair distribution, such as beard, pubic, chest, and axillary hair; laryngeal enlargement; vocal chord thickening; alterations in body musculature; and fat distribution.
Androgens also cause retention of nitrogen, sodium, potassium, and phosphorus, and decreased urinary excretion of calcium. Androgens have been reported to increase protein anabolism and decrease protein catabolism. Nitrogen balance is improved only when there is sufficient intake of calories and protein.
Androgens are responsible for the growth spurt of adolescence and for the eventual termination of linear growth which is brought about by fusion of the epiphyseal growth centers. In children, exogenous androgens accelerate linear growth rates but may cause a disproportionate advancement in bone maturation. Use over long periods may result in fusion of the epiphyseal growth centers and termination of the growth process. Androgens have been reported to stimulate the production of red blood cells by enhancing the production of erythropoietic stimulating factor.

Pharmacokinetics:

Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks.
Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life.
About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action.

Indications:

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.
 

Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

Contraindications:

Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus.
This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components.

Precautions:

Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma.
Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established.

Drug Interactions:

Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped.
Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements.
ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease.
Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result.

Side Effects:

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).
 

Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:
• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.

Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

Storage:

• Store below 30 C°
• Protect from light and freezing

Packing:

• Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules

stdClass Object ( [nid] => 263 [type] => product [language] => en [uid] => 1 [status] => 1 [created] => 1373629818 [changed] => 1392757632 [comment] => 0 [promote] => 0 [moderate] => 0 [sticky] => 0 [tnid] => 140 [translate] => 0 [vid] => 263 [revision_uid] => 1 [title] => Testosterone Enanthate [body] =>
Image: 
Brand Name: 

ANDRONE®

Dosage Form: 

Injection 100mg/ml - Injection 250mg/ml

Pharmacological Category: 

Sex Hormones

Therapeutic Category: 

Androgens

Pregnancy Category: 

Category X

Endogenous androgens are responsible for the normal growth and development of the male sex organs and for maintenance of secondary sex characteristics. These effects include growth and maturation of prostate, seminal vesicles, penis, and scrotum; development of male hair distribution, such as beard, pubic, chest, and axillary hair; laryngeal enlargement; vocal chord thickening; alterations in body musculature; and fat distribution.
Androgens also cause retention of nitrogen, sodium, potassium, and phosphorus, and decreased urinary excretion of calcium. Androgens have been reported to increase protein anabolism and decrease protein catabolism. Nitrogen balance is improved only when there is sufficient intake of calories and protein.
Androgens are responsible for the growth spurt of adolescence and for the eventual termination of linear growth which is brought about by fusion of the epiphyseal growth centers. In children, exogenous androgens accelerate linear growth rates but may cause a disproportionate advancement in bone maturation. Use over long periods may result in fusion of the epiphyseal growth centers and termination of the growth process. Androgens have been reported to stimulate the production of red blood cells by enhancing the production of erythropoietic stimulating factor.

Pharmacokinetics: 

Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks.
Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life.
About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action.

Indications: 

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.
 

Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

Contraindications: 

Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus.
This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components.

Precautions: 

Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma.
Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established.

Drug Interactions: 

Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped.
Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements.
ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease.
Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result.

Side Effects: 

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).
 

Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:
• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.

Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

Storage: 

• Store below 30 C°
• Protect from light and freezing

Packing: 

• Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules

[log] => [revision_timestamp] => 1392757632 [format] => 1 [name] => root [picture] => [data] => a:5:{s:29:"taxonomy_image_disable_images";i:0;s:20:"l10n_client_disabled";i:0;s:13:"form_build_id";s:48:"form-aTcSqa5gxC3qlJ6qWYJHsxgkPEq9KwPBBC-KEX1q3PQ";s:18:"admin_compact_mode";b:1;s:7:"contact";i:0;} [path] => product/testosterone-enanthate [field_one_image] => Array ( [0] => Array ( [fid] => 239 [uid] => 1 [filename] => testosterone_enanthate_s.jpg [filepath] => sites/default/files/images/testosterone_enanthate_s.jpg [filemime] => image/jpeg [filesize] => 64806 [status] => 1 [timestamp] => 1329504259 [list] => 1 [data] => Array ( [alt] => [title] => ) [i18nsync] => 1 [nid] => 263 [view] => ) ) [field_administration_and_dosage] => Array ( [0] => Array ( [value] => [format] => [safe] => [view] => ) ) [field_brand_name] => Array ( [0] => Array ( [value] => ANDRONE® [format] => 1 [safe] =>

ANDRONE®

[view] =>

ANDRONE®

) ) [field_contraindications] => Array ( [0] => Array ( [value] => Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus. This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components. [format] => 1 [safe] =>

Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus.
This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components.

[view] =>

Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus.
This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components.

) ) [field_dosage_form] => Array ( [0] => Array ( [value] => Injection 100mg/ml - Injection 250mg/ml [format] => 1 [safe] =>

Injection 100mg/ml - Injection 250mg/ml

[view] =>

Injection 100mg/ml - Injection 250mg/ml

) ) [field_drug_interactions] => Array ( [0] => Array ( [value] => Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped. Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements. ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease. Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result. [format] => 1 [safe] =>

Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped.
Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements.
ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease.
Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result.

[view] =>

Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped.
Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements.
ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease.
Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result.

) ) [field_indications] => Array ( [0] => Array ( [value] =>

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.

 


Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

[format] => 1 [safe] =>

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.
 

Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

[view] =>

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.
 

Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

) ) [field_packing] => Array ( [0] => Array ( [value] => • Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules [format] => 1 [safe] =>

• Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules

[view] =>

• Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules

) ) [field_pdf] => Array ( [0] => Array ( [fid] => 240 [uid] => 1 [filename] => testosterone_enanthate.pdf [filepath] => sites/default/files/pdf/testosterone_enanthate.pdf [filemime] => application/pdf [filesize] => 307587 [status] => 1 [timestamp] => 1329504417 [list] => 1 [data] => [i18nsync] => 1 [nid] => 263 [view] => ) ) [field_pharmacokinetics] => Array ( [0] => Array ( [value] => Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks. Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life. About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes. In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action. [format] => 1 [safe] =>

Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks.
Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life.
About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action.

[view] =>

Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks.
Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life.
About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action.

) ) [field_pharmacological_category] => Array ( [0] => Array ( [value] => Sex Hormones [format] => 1 [safe] =>

Sex Hormones

[view] =>

Sex Hormones

) ) [field_precautions] => Array ( [0] => Array ( [value] => Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma. Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established. [format] => 1 [safe] =>

Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma.
Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established.

[view] =>

Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma.
Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established.

) ) [field_pregnancy_category] => Array ( [0] => Array ( [value] => Category X [format] => 1 [safe] =>

Category X

[view] =>

Category X

) ) [field_references] => Array ( [0] => Array ( [value] => [format] => [safe] => [view] => ) ) [field_side_effects] => Array ( [0] => Array ( [value] =>

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).

 


Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:

• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.


Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

[format] => 1 [safe] =>

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).
 

Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:
• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.

Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

[view] =>

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).
 

Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:
• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.

Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

) ) [field_storage] => Array ( [0] => Array ( [value] => • Store below 30 C° • Protect from light and freezing [format] => 1 [safe] =>

• Store below 30 C°
• Protect from light and freezing

[view] =>

• Store below 30 C°
• Protect from light and freezing

) ) [field_therapeutic_category] => Array ( [0] => Array ( [value] => Androgens [format] => 1 [safe] =>

Androgens

[view] =>

Androgens

) ) [field_related_products] => Array ( [0] => Array ( [nid] => [i18nsync] => 1 [safe] => Array ( ) [view] => ) [1] => Array ( [nid] => [i18nsync] => 1 [safe] => Array ( ) [view] => ) [2] => Array ( [nid] => [i18nsync] => 1 [safe] => Array ( ) [view] => ) ) [taxonomy] => Array ( [5] => stdClass Object ( [tid] => 5 [vid] => 1 [name] => Hormonal Drugs [description] => [weight] => 3 [language] => [trid] => 0 [v_weight_unused] => 0 ) ) [build_mode] => 0 [readmore] => 1 [content] => Array ( [field_one_image] => Array ( [#type_name] => product [#context] => full [#field_name] => field_one_image [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => -3 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => image_plain [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_one_image [#weight] => 0 [#theme] => imagefield_formatter_image_plain [#item] => Array ( [fid] => 239 [uid] => 1 [filename] => testosterone_enanthate_s.jpg [filepath] => sites/default/files/images/testosterone_enanthate_s.jpg [filemime] => image/jpeg [filesize] => 64806 [status] => 1 [timestamp] => 1329504259 [list] => 1 [data] => Array ( [alt] => [title] => ) [i18nsync] => 1 [nid] => 263 [#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] => ) [#title] => [#description] => [#children] => [#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_one_image [#title] => Image [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] => [#printed] => 1 ) [#title] => [#description] => [#children] =>
Image: 
[#printed] => 1 ) [field_brand_name] => Array ( [#type_name] => product [#context] => full [#field_name] => field_brand_name [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => -2 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_brand_name [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => ANDRONE® [format] => 1 [safe] =>

ANDRONE®

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

ANDRONE®

) [#title] => [#description] => [#children] =>

ANDRONE®

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_brand_name [#title] => Brand Name [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

ANDRONE®

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Brand Name: 

ANDRONE®

[#printed] => 1 ) [field_dosage_form] => Array ( [#type_name] => product [#context] => full [#field_name] => field_dosage_form [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => -1 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_dosage_form [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => Injection 100mg/ml - Injection 250mg/ml [format] => 1 [safe] =>

Injection 100mg/ml - Injection 250mg/ml

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

Injection 100mg/ml - Injection 250mg/ml

) [#title] => [#description] => [#children] =>

Injection 100mg/ml - Injection 250mg/ml

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_dosage_form [#title] => Dosage Form [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

Injection 100mg/ml - Injection 250mg/ml

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Dosage Form: 

Injection 100mg/ml - Injection 250mg/ml

[#printed] => 1 ) [#pre_render] => Array ( [0] => content_alter_extra_weights ) [field_pharmacological_category] => Array ( [#type_name] => product [#context] => full [#field_name] => field_pharmacological_category [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 0 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_pharmacological_category [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => Sex Hormones [format] => 1 [safe] =>

Sex Hormones

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

Sex Hormones

) [#title] => [#description] => [#children] =>

Sex Hormones

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_pharmacological_category [#title] => Pharmacological Category [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

Sex Hormones

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Pharmacological Category: 

Sex Hormones

[#printed] => 1 ) [#content_extra_fields] => Array ( [title] => Array ( [label] => Generic Name [description] => Node module form. [weight] => -5 ) [body_field] => Array ( [label] => Pharmacology [description] => Node module form. [weight] => 3 [view] => body ) [revision_information] => Array ( [label] => Revision information [description] => Node module form. [weight] => 18 ) [author] => Array ( [label] => Authoring information [description] => Node module form. [weight] => 19 ) [options] => Array ( [label] => Publishing options [description] => Node module form. [weight] => 20 ) [language] => Array ( [label] => Language [description] => Locale module form. [weight] => -4 ) [translation] => Array ( [label] => Translation settings [description] => Translation module form. [weight] => 21 ) [menu] => Array ( [label] => Menu settings [description] => Menu module form. [weight] => 17 ) [taxonomy] => Array ( [label] => Taxonomy [description] => Taxonomy module form. [weight] => -3 ) [path] => Array ( [label] => Path settings [description] => Path module form. [weight] => 16 ) [custom_breadcrumbs] => Array ( [label] => Custom Breadcrumbs [description] => Custom Breadcrumbs module form. [weight] => 30 ) ) [field_therapeutic_category] => Array ( [#type_name] => product [#context] => full [#field_name] => field_therapeutic_category [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 1 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_therapeutic_category [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => Androgens [format] => 1 [safe] =>

Androgens

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

Androgens

) [#title] => [#description] => [#children] =>

Androgens

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_therapeutic_category [#title] => Therapeutic Category [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

Androgens

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Therapeutic Category: 

Androgens

[#printed] => 1 ) [field_pregnancy_category] => Array ( [#type_name] => product [#context] => full [#field_name] => field_pregnancy_category [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 2 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_pregnancy_category [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => Category X [format] => 1 [safe] =>

Category X

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

Category X

) [#title] => [#description] => [#children] =>

Category X

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_pregnancy_category [#title] => Pregnancy Category [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

Category X

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Pregnancy Category: 

Category X

[#printed] => 1 ) [body] => Array ( [#weight] => 3 [#value] =>

Endogenous androgens are responsible for the normal growth and development of the male sex organs and for maintenance of secondary sex characteristics. These effects include growth and maturation of prostate, seminal vesicles, penis, and scrotum; development of male hair distribution, such as beard, pubic, chest, and axillary hair; laryngeal enlargement; vocal chord thickening; alterations in body musculature; and fat distribution.
Androgens also cause retention of nitrogen, sodium, potassium, and phosphorus, and decreased urinary excretion of calcium. Androgens have been reported to increase protein anabolism and decrease protein catabolism. Nitrogen balance is improved only when there is sufficient intake of calories and protein.
Androgens are responsible for the growth spurt of adolescence and for the eventual termination of linear growth which is brought about by fusion of the epiphyseal growth centers. In children, exogenous androgens accelerate linear growth rates but may cause a disproportionate advancement in bone maturation. Use over long periods may result in fusion of the epiphyseal growth centers and termination of the growth process. Androgens have been reported to stimulate the production of red blood cells by enhancing the production of erythropoietic stimulating factor.

[#title] => [#description] => [#printed] => 1 ) [field_pharmacokinetics] => Array ( [#type_name] => product [#context] => full [#field_name] => field_pharmacokinetics [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 4 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_pharmacokinetics [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks. Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life. About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes. In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action. [format] => 1 [safe] =>

Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks.
Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life.
About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action.

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks.
Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life.
About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action.

) [#title] => [#description] => [#children] =>

Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks.
Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life.
About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action.

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_pharmacokinetics [#title] => Pharmacokinetics [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks.
Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life.
About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action.

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Pharmacokinetics: 

Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks.
Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life.
About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action.

[#printed] => 1 ) [field_indications] => Array ( [#type_name] => product [#context] => full [#field_name] => field_indications [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 5 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_indications [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] =>

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.

 


Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

[format] => 1 [safe] =>

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.
 

Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.
 

Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

) [#title] => [#description] => [#children] =>

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.
 

Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_indications [#title] => Indications [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.
 

Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Indications: 

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.
 

Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

[#printed] => 1 ) [field_administration_and_dosage] => Array ( [#type_name] => product [#context] => full [#field_name] => field_administration_and_dosage [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 6 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_administration_and_dosage [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => [format] => [safe] => [#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => ) [#title] => [#description] => [#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_administration_and_dosage [#title] => Administration and Dosage [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#printed] => 1 ) [#title] => [#description] => [#printed] => 1 ) [field_contraindications] => Array ( [#type_name] => product [#context] => full [#field_name] => field_contraindications [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 7 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_contraindications [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus. This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components. [format] => 1 [safe] =>

Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus.
This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components.

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus.
This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components.

) [#title] => [#description] => [#children] =>

Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus.
This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components.

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_contraindications [#title] => Contraindications [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus.
This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components.

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Contraindications: 

Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus.
This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components.

[#printed] => 1 ) [field_precautions] => Array ( [#type_name] => product [#context] => full [#field_name] => field_precautions [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 8 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_precautions [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma. Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established. [format] => 1 [safe] =>

Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma.
Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established.

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma.
Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established.

) [#title] => [#description] => [#children] =>

Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma.
Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established.

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_precautions [#title] => Precautions [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma.
Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established.

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Precautions: 

Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma.
Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established.

[#printed] => 1 ) [field_drug_interactions] => Array ( [#type_name] => product [#context] => full [#field_name] => field_drug_interactions [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 9 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_drug_interactions [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped. Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements. ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease. Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result. [format] => 1 [safe] =>

Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped.
Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements.
ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease.
Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result.

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped.
Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements.
ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease.
Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result.

) [#title] => [#description] => [#children] =>

Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped.
Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements.
ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease.
Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result.

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_drug_interactions [#title] => Drug Interactions [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped.
Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements.
ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease.
Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result.

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Drug Interactions: 

Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped.
Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements.
ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease.
Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result.

[#printed] => 1 ) [field_side_effects] => Array ( [#type_name] => product [#context] => full [#field_name] => field_side_effects [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 10 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_side_effects [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] =>

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).

 


Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:

• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.


Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

[format] => 1 [safe] =>

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).
 

Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:
• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.

Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).
 

Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:
• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.

Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

) [#title] => [#description] => [#children] =>

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).
 

Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:
• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.

Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_side_effects [#title] => Side Effects [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).
 

Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:
• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.

Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Side Effects: 

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).
 

Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:
• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.

Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

[#printed] => 1 ) [field_storage] => Array ( [#type_name] => product [#context] => full [#field_name] => field_storage [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 11 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_storage [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => • Store below 30 C° • Protect from light and freezing [format] => 1 [safe] =>

• Store below 30 C°
• Protect from light and freezing

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

• Store below 30 C°
• Protect from light and freezing

) [#title] => [#description] => [#children] =>

• Store below 30 C°
• Protect from light and freezing

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_storage [#title] => Storage [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

• Store below 30 C°
• Protect from light and freezing

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Storage: 

• Store below 30 C°
• Protect from light and freezing

[#printed] => 1 ) [field_packing] => Array ( [#type_name] => product [#context] => full [#field_name] => field_packing [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 12 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_packing [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => • Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules [format] => 1 [safe] =>

• Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules

[#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] =>

• Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules

) [#title] => [#description] => [#children] =>

• Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules

[#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_packing [#title] => Packing [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] =>

• Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules

[#printed] => 1 ) [#title] => [#description] => [#children] =>
Packing: 

• Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules

[#printed] => 1 ) [field_references] => Array ( [#type_name] => product [#context] => full [#field_name] => field_references [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 13 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_references [#weight] => 0 [#theme] => text_formatter_default [#item] => Array ( [value] => [format] => [safe] => [#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => ) [#title] => [#description] => [#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_references [#title] => References [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#printed] => 1 ) [#title] => [#description] => [#printed] => 1 ) [field_pdf] => Array ( [#type_name] => product [#context] => full [#field_name] => field_pdf [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 14 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_pdf [#weight] => 0 [#theme] => filefield_formatter_default [#item] => Array ( [fid] => 240 [uid] => 1 [filename] => testosterone_enanthate.pdf [filepath] => sites/default/files/pdf/testosterone_enanthate.pdf [filemime] => application/pdf [filesize] => 307587 [status] => 1 [timestamp] => 1329504417 [list] => 1 [data] => [i18nsync] => 1 [nid] => 263 [#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => [#children] => ) [#title] => [#description] => [#children] => [#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_pdf [#title] => PDF [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#children] => [#printed] => 1 ) [#title] => [#description] => [#children] => [#printed] => 1 ) [field_related_products] => Array ( [#type_name] => product [#context] => full [#field_name] => field_related_products [#post_render] => Array ( [0] => content_field_wrapper_post_render ) [#weight] => 15 [field] => Array ( [#description] => [items] => Array ( [0] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_related_products [#weight] => 0 [#theme] => nodereference_formatter_default [#item] => Array ( [nid] => [i18nsync] => 1 [safe] => Array ( ) [#delta] => 0 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => ) [1] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_related_products [#weight] => 1 [#theme] => nodereference_formatter_default [#item] => Array ( [nid] => [i18nsync] => 1 [safe] => Array ( ) [#delta] => 1 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => ) [2] => Array ( [#formatter] => default [#node] => stdClass Object *RECURSION* [#type_name] => product [#field_name] => field_related_products [#weight] => 2 [#theme] => nodereference_formatter_default [#item] => Array ( [nid] => [i18nsync] => 1 [safe] => Array ( ) [#delta] => 2 ) [#title] => [#description] => [#theme_used] => 1 [#printed] => 1 [#type] => [#value] => [#prefix] => [#suffix] => ) [#title] => [#description] => [#printed] => 1 ) [#single] => 1 [#attributes] => Array ( ) [#required] => [#parents] => Array ( ) [#tree] => [#context] => full [#page] => 1 [#field_name] => field_related_products [#title] => Related Products [#access] => 1 [#label_display] => above [#teaser] => [#node] => stdClass Object *RECURSION* [#type] => content_field [#printed] => 1 ) [#title] => [#description] => [#printed] => 1 ) [#title] => [#description] => [#children] =>
Image: 
Brand Name: 

ANDRONE®

Dosage Form: 

Injection 100mg/ml - Injection 250mg/ml

Pharmacological Category: 

Sex Hormones

Therapeutic Category: 

Androgens

Pregnancy Category: 

Category X

Endogenous androgens are responsible for the normal growth and development of the male sex organs and for maintenance of secondary sex characteristics. These effects include growth and maturation of prostate, seminal vesicles, penis, and scrotum; development of male hair distribution, such as beard, pubic, chest, and axillary hair; laryngeal enlargement; vocal chord thickening; alterations in body musculature; and fat distribution.
Androgens also cause retention of nitrogen, sodium, potassium, and phosphorus, and decreased urinary excretion of calcium. Androgens have been reported to increase protein anabolism and decrease protein catabolism. Nitrogen balance is improved only when there is sufficient intake of calories and protein.
Androgens are responsible for the growth spurt of adolescence and for the eventual termination of linear growth which is brought about by fusion of the epiphyseal growth centers. In children, exogenous androgens accelerate linear growth rates but may cause a disproportionate advancement in bone maturation. Use over long periods may result in fusion of the epiphyseal growth centers and termination of the growth process. Androgens have been reported to stimulate the production of red blood cells by enhancing the production of erythropoietic stimulating factor.

Pharmacokinetics: 

Testosterone esters are less polar than free testosterone. Testosterone esters in oil injected intramuscularly are absorbed slowly from the lipid phase; thus Testosterone Enanthate can be given at intervals of two to four weeks.
Testosterone in plasma is 98 percent bound to a specific testosterone-estradiol binding globulin, and about two percent is free. Generally, the amount of this sex-hormone binding globulin (SHBG) in the plasma will determine the distribution of testosterone between free and bound forms, and the free testosterone concentration will determine its half-life.
About 90 percent of a dose of testosterone is excreted in the urine as glucuronic and sulfuric acid conjugates of testosterone and its metabolites; about six percent of a dose is excreted in the feces, mostly in the unconjugated form. Inactivation of testosterone occurs primarily in the liver. Testosterone is metabolized to various 17-keto steroids through two different pathways. There are considerable variations of the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
In responsive tissues, the activity of testosterone appears to depend on reduction to dihydrotestosterone (DHT), which binds to cytosol receptor proteins. The steroid-receptor complex is transported to the nucleus where it initiates transcription events and cellular changes related to androgen action.

Indications: 

Males
Testosterone Enanthate Injection, USP is indicated for replacement therapy in conditions associated with a deficiency or absence of endogenous testosterone.
Primary hypogonadism (congenital or acquired) – Testicular failure due to cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, or orchidectomy.
Hypogonadotropic hypogonadism (congenital or acquired) – Idiopathic gonadotropin or luteinizing hormone releasing hormone (LHRH) deficiency, or pituitary-hypothalamic injury from tumors, trauma, or radiation. (Appropriate adrenal cortical and thyroid hormone replacement therapy are still necessary, however, and are actually of primary importance.)
If the above conditions occur prior to puberty, androgen replacement therapy will be needed during the adolescent years for development of secondary sexual characteristics. Prolonged androgen treatment will be required to maintain sexual characteristics in these and other males who develop testosterone deficiency after puberty.
Delayed puberty – Testosterone Enanthate Injection, USP may be used to stimulate puberty in carefully selected males with clearly delayed puberty. These patients usually have a familial pattern of delayed puberty that is not secondary to a pathological disorder; puberty is expected to occur spontaneously at a relatively late date. Brief treatment with conservative doses may occasionally be justified in these patients if they do not respond to psychological support. The potential adverse effect on bone maturation should be discussed with the patient and parents prior to androgen administration. An X-ray of the hand and wrist to determine bone age should be obtained every six months to assess the effect of treatment on the epiphyseal centers.
 

Females
Metastatic mammary cancer – Testosterone Enanthate Injection, USP may be used secondarily in women with advancing inoperable metastatic (skeletal) mammary cancer who are one to five years postmenopausal. Primary goals of therapy in these women include ablation of the ovaries. Other methods of counteracting estrogen activity are adrenalectomy, hypophysectomy, and/or antiestrogen therapy. This treatment has also been used in premenopausal women with breast cancer who have benefited from oophorectomy and are considered to have a hormone-responsive
tumor. Judgment concerning androgen therapy should be made by an oncologist with expertise in this field.

Contraindications: 

Androgens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like strucAndrogens are contraindicated in men with carcinomas of the breast or with known or suspected carcinomas of the prostate and in women who are or may become pregnant. When administered to pregnant women, androgens cause virilization of the external genitalia of the female fetus. This virilization includes clitoromegaly, abnormal vaginal development, and fusion of genital folds to form a scrotal-like structure. The degree of masculinization is related to the amount of drug given and the age of the fetus and is most likely to occur in the female fetus when the drugs are given in the first trimester. If the patient becomes pregnant while taking androgens, she should be apprised of the potential hazard to the fetus.
This preparation is also contraindicated in patients with a history of hypersensitivity to any of its components.

Precautions: 

Women should be observed for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). Discontinuation of drug therapy at the time of evidence of mild virilism is necessary to prevent irreversible virilization. Such virilization is usual following androgen use at high doses and is not prevented by concomitant use of estrogens. A decision may be made by the patient and the physician that some virilization will be tolerated during treatment for breast carcinoma.
Because androgens may alter serum cholesterol concentration, caution should be used when administering these drugs to patients with a history of myocardial infarction or coronary artery disease. Serial determinations of serum cholesterol should be made and therapy adjusted accordingly. A causal relationship between myocardial infarction and hypercholesterolemia has not been established.

Drug Interactions: 

Anticoagulants, oral – C-17 substituted derivatives of testosterone, such as methandrostenolone, have been reported to decrease the anticoagulant requirement. Patients receiving oral anticoagulant therapy require close monitoring especially when androgens are started or stopped.
Antidiabetic drugs and insulin – In diabetic patients, the metabolic effects of androgens may decrease blood glucose and insulin requirements.
ACTH and corticosteroids – Enhanced tendency toward edema. Use caution when giving these drugs together, especially in patients with hepatic or cardiac disease.
Oxyphenbutazone – Elevated serum levels of oxyphenbutazone may result.

Side Effects: 

• swelling, rapid weight gain;
• increased or ongoing erection of the penis;
• bone pain, increased thirst, memory problems, restless feeling, confusion, nausea, loss of appetite, increased urination, weakness, muscle twitching; or
• nausea, vomiting, stomach pain, loss of appetite, and jaundice (yellowing of the skin or eyes).
 

Women receiving may develop male characteristics, which could be irreversible if testosterone treatment is continued. Call your doctor as soon as possible if you notice any of these signs of excess testosterone:
• acne;
• changes in your menstrual periods;
• male-pattern hair growth (such as on the chin or chest);
• male pattern baldness;
• enlarged clitoris; or
• increase or decrease in sex drive.

Less serious testosterone side effects may include:
• breast swelling in men;
• headache, anxiety, depressed mood;
• numbness or tingly feeling; or
• pain or swelling where the medicine was injected.

Storage: 

• Store below 30 C°
• Protect from light and freezing

Packing: 

• Injection 100mg/ml - Injection 250mg/ml:Box of 10 ampoules

[#printed] => 1 ) [links] => Array ( [node_translation_fa] => Array ( [title] => فارسی [href] => node/140 [language] => stdClass Object ( [language] => fa [name] => Persian [native] => فارسی [direction] => 1 [enabled] => 1 [plurals] => 0 [formula] => [domain] => [prefix] => fa [weight] => 3 [javascript] => ) [attributes] => Array ( [title] => تستوسترون انانتات [class] => translation-link ) ) ) )
button

CONTACT US:

Head Office:
Address: No.1, Beastoon Ave., Dr. Fatemi Sq., Tehran1431663135 Iran
Tel: (+98 21)-889 65323
Fax: (+98 21)-889 57056
Factory:
Address: Caspian tamin Pharmaceutical Co., Entrance 1, Rasht Industrial Zone, Rasht, Guilan, Iran
Tel: (+98 131) 338-2511- 8
Fax: (+98 131) 338 – 2517